The primary source for this course has been ‹ Peskin, Schröder: An introduction to Quantum Field Theory, ABP 1995, ‹ Itzykson, Zuber: Quantum Field Theory, Dover 1980, ‹ Kugo: Eichtheorie, Springer 1997, 1 The nature of Quantum Field Theory in Curved Spacetime Quantum field theory in curved spacetime (QFTCS) is the theory of quantum fields propagating in a background, classical, curved spacetime (M;g). <> [Oec00b] R. Oeckl, Untwisting noncommutative R d and the equivalence of quantum eld ��"}\�r��lZ����*����4)-�a1ݷ��ڪ��m����#˔B3����u�ÆU�"J}k�&q�ER�@D;�b���amw���Chu�"�X"�H�p�ҌW~ɫ�n�. 13 0 obj x��ZM��6��WxWg����@am�@ɮ�B8���?��@�_�'Krf�s�P�9����ջ��w��m���p&I&�FJge�=\e?=�aH*��.3�͖�#.�����Q�. A. Zee, Quantum Field Theory in a Nutshell This is charming book, where emphasis is placed on physical understanding and the author isn’t afraid to hide the ugly truth when necessary. ���i��iX#O� D��x%���v�Œ4G�%/��w`Z�95��FZT��4 H�p(wU[�~A�*�&In�p�T|��a�I�YpRp$i ��/���@;�ɩ#@� TL:��s���":�����|ј��Ey��֐���N���-Hƀ�W�McǾ��1��+�o�7�zN���-8���I^����LL��%��1���D��M�3��rZb9�����C԰>�r���I� �ĥε�7実�u�\�%#�l@�@���Q�ͮ4��= On ac-count of its classical treatment of the metric, QFTCS cannot be a fundamental theory of nature. 6 Path Integrals in Quantum Mechanics 57 7 The Path Integral for the Harmonic Oscillator (6) 63 8 The Path Integral for Free Field Theory (3, 7) 67 9 The Path Integral for Interacting Field Theory (8) 71 10 Scattering Amplitudes and the Feynman Rules (5, 9) 87 11 Cross Sections and Decay Rates (10) 93 12 Dimensional Analysis with ¯h = c= 1 (3) 104 N��O)�E2d�FR�p�����J�r[W&��͍%����z���YIE�{$�G�y�.�g��Z���&�d�=e��B�z�����l��j7�1%09/�{�4V�oܕ�����M�/���JRʗ+%���g�y��]�{ѷ;�Z�!t��ą��OK�Ĕ�X�l��Z۪]^t�:���m�~nY; 'ӱF��&}y#�Јaj|Ԗ]���?��[q�]v7 Mi`&H�ut6M�5� M��� �* � "�6��)���s ��%P��X@dQm��# !H7��x߽��Cs����v�� (Quantum Field Theory and the Standard Model) Schwartz, M.D 5#FbO�R�}�+9�LIr��X���䞏2��9�d ����P{�,H�`#�^㐜�����X�4~�nv5hʉ�M�9�kBγ�����a;5n�i�u緭�.���0����*f���@��@��tLދ�DԥZJ��?W�)���}��=�,�lb�D�gf? Qퟆ�EpAH�[� In this part, in the rst three chapters I write about scalar elds, elds with spin, and non-abelian elds. section Fundamentals of Quantum Field Theory. endobj <> stream endobj %PDF-1.4 endstream It contains many gems. It has emerged as the most successful physical framework describing the subatomic world. The quantum field theoretical predictions for the interactions between electrons and photons have proved to be 12 0 obj <>/ProcSet[/PDF/Text/ImageC/ImageB/ImageI]>> %���� (�G�a������ߨ2\ ]������ӝx�Ԅ�O��}�X¸ޕcS�Y���q�M�j��X�O$ӥ�O����z�Yͫ֍,���܌�ذ5�����q�� Quantum Field Theory: Lecture notes for FY3464 and FY3466 and a bit more ... chanics which are both important for the transition to a quantum theory. <> endobj 9 0 obj Either formulation of classical mechanics can be derived using an action principle as starting point. Quantum Field Theory as a theory of elementary particles Quantum Field Theory is a physical theory of elementary particles and their interactions. The second part is dedicated to Topological Field Theories. Quantum eld theory (QFT) is supposed to describe these phenomena well, yet its mathematical foundations are shaky or non-existent. <>/ProcSet[/PDF/Text/ImageC/ImageB/ImageI]>> 10 0 obj endstream An operator-valued distribution is an abstract object, which when integrated stream x�S(T0T0 BCs#s3K=K��\�}73C=KK��4]=ScS���h #��/��@. x�mQ�N�0��{��f��W̉BSQDK� R�8X%@$ ��=�Hȇ}���� ��1� he05���$��9��H ����(����[rULWy��O�/�����g��5Mc���$�����ה�)��fCa���)MRr��eF��sG�4 �J�)����>ٶ�M����h��Q+�r���dDLq/ b)&&�f�+�ض�˦w.xypV�d���]7�-Ղ�-un���t�۾�ES}�mW��I�NPy&��Dž�)�����y�������'���O�d'��-�z�:�eP�. The following chapters are dedicated to quantum electrodynamics and quantum chromodynamics, followed by the renormalization theory. The fun-damental objects in quantum eld theory are operator-valued distributions. L. Ryder, Quantum Field Theory This elementary text has a nice discussion of much of the material in this course. 17 0 obj stream endobj [Oec99a] R. Oeckl, Braided Quantum Field Theory, Preprint DAMTP-1999-82, hep- th/9906225. This is a writeup of my Master programme course on Quantum Field Theory I (Chapters 1-6) and Quantum Field Theory II.